domingo, 22 de enero de 2012

Concepto de regresion

La regresión estadística o regresión a la media es la tendencia de una medición extrema a presentarse más cercana a la media en una segunda medición. La regresión se utiliza para predecir una medida basándonos en el conocimiento de otra.

Origen del concepto

El término regresión fue introducido por Francis Galton en su libro Natural inheritance (1889) y fue confirmada por su amigo Karl Pearson. Su trabajo se centró en la descripción de los rasgos físicos de los descendientes (variable A) a partir de los de sus padres (variable B). Estudiando la altura de padres e hijos a partir de más de mil registros de grupos familiares, se llegó a la conclusión de que los padres muy altos tenían una tendencia a tener hijos que heredaban parte de esta altura, pero que revelaban también una tendencia a regresar a la media. Galton generalizó esta tendencia bajo la "ley de la regresión universal": «Cada peculiaridad en un hombre es compartida por sus descendientes, pero en media, en un grado menor.»

Modelos de regresión

Regresion lineal: la regresión lineal o ajuste lineal es un método matemático que modeliza la relación entre una variable dependiente Y, las variables independientes Xi y un término aleatorio.

Tipos de regresion lineal:

Regresión lineal simple


Sólo se maneja una variable independiente, por lo que sólo cuenta con dos parámetros. Son de la forma:
 Yi = β0 + β1Xi + εi
Regresión lineal múltiple
La regresion lineal nos permite trabajar con una variable a nivel de intervalo o razón, así también se puede comprender la relación de dos o más variables y nos permitirá relacionar mediante ecuaciones, una variable en relación a otras variables llamándose Regresión múltiple. Constantemente en la práctica de la investigación estadística, se encuentran variables que de alguna manera están relacionados entre si, por lo que es posible que una de las variables puedan relacionarse matemáticamente en función de otra u otras variables.

la regresión no lineal: es un problema de inferencia para un modelo tipo:
y = f(x,θ) + ε
basado en datos multidimensionales x,y, donde f es alguna función no lineal respecto a algunos parámetros desconocidos θ. Como mínimo, se pretende obtener los valores de los parámetros asociados con la mejor curva de ajuste (habitualmente, con el método de los mínimos cuadrados). Con el fin de determinar si el modelo es adecuado, puede ser necesario utilizar conceptos de inferencia estadística tales como intervalos de confianza para los parámetros así como pruebas de bondad de ajuste.

No hay comentarios:

Publicar un comentario en la entrada